Esame di Chimica Generale – 13 Giugno 2012

COGNOME			NOME			M	MATRICOLA				
	1	2	3	4	5	6	7	8	9	10	

Indicazioni per lo svolgimento del compito. Scrivete il vostro Nome e Cognome in STAMPATELLO su ciascuno di questi fogli. Il tempo concesso è di 3 ore. Scrivete la soluzione di ogni esercizio su questi fogli; nessun altro foglio verrà preso in considerazione. Per la soluzione degli esercizi 1, 3, 5 e 7 userete lo spazio disponibile sotto il testo, per la soluzione degli esercizi 2, 4, 6 e 8 il retro del foglio; per gli altri esercizi userete esclusivamente gli spazi predisposti: tutto quello che è scritto fuori degli spazi predisposti non verrà preso in considerazione. Potete usare SOLAMENTE la tavola periodica e una calcolatrice; libri, appunti e tabelle non sono consentiti.

Costanti chimico fisiche (che possono essere utili nella soluzione degli esercizi)

Keb(acqua) = 0.512°CKg/mol

Costante dei gas: $R = 0.082056 \, l \cdot atm/^{\circ} K = 8.3144 \, jou/^{\circ} K = 1.9872 \, cal/^{\circ} K$

Costante di Faraday: F = 96500 C

Costante di Avogadro = 6.022×10^{23} $Ka(HCN) = 4.0 \times 10^{-10}$

 $Kb(NH_3) = 1.8 \times 10^{-5}$ $E^{\circ}(Ag^{+}/Ag) = 0.800V$

 $E^{\circ}(Cu^{+2}/Cu) = 0.342V$

Esercizio 1 Calcolare la pressione osmotica di una soluzione di cloruro di calcio al 10% p/p in acqua a 30 °C sapendo che la densità della soluzione e 1.066 g/mL					

La costante di equilibrio alla temperatura di 950 °C per la reazione

Cognome e Nome _____

CO (g) + H_2O (g) \leftrightarrow CO₂ (g) + H_2 (g) È K = 0.64. Calcolare il numero di moli di ciascun componente quando si raggiunge l'equilibrio partendo da 2.0 moli di monossido di carbonio e 2.0 moli di acqua. Al sistema in equilibrio si aggiungono 4.2 g di CO e 4.4g di CO₂. Stabilire in quale direzione si sposta l'equilibrio.

Cognome e Nome	
E	

Esercizio 3

Calcolare i grammi di cianuro di sodio che devono essere sciolti in 100.0 mL di acqua in modo tale che il pH sia uguale a quello di una soluzione contenente 0.250 moli/L di NH_3

Esercizio 4

2.50L di una miscela di gas propano (C_3H_8) e gas metano (CH_4) misurati alla temperatura di $25^{\circ}C$ ed alla pressione di 1.00 atm vengono mescolati con 15.0 L di ossigeno misurati alle stesse T e P ed il tutto viene introdotto in un recipiente del volume di 10.0 L.

a. Determinare la pressione nel recipiente.

A questo punto viene innescata la reazione di combustione che va a completezza e la temperatura all'interno del recipiente sale a 140°C.

Sapendo che l'anidride carbonica che si produce dalla reazione, se fatta gorgogliare in una soluzione di idrossido di calcio, produce 21.3g di carbonato di calcio determinare:

- b. la frazione molare del metano nella miscela iniziale (propano + metano).
- c. la pressione nel recipiente alla fine della reazione.

Cognome e Nome	
Esercizio 5	
La solubilità in acqua del BaSO ₄ è 2.78 mg/L mentre quella del CaSO ₄ è 1.24	4 g/L. Vengono mescolati 200 mL di
D-(NO.) 0.100 M 200 I I C-(NO.) 0.100 M - 250 I I N- CO. 0.100 N	Ar - 1 11 1 4-4-11

Ba(NO₃)₂ 0.100 M, 200 mL di Ca(NO₃)₂ 0.100 M e 350 mL di Na₂SO₄ 0.100 M ed il volume totale viene portato ad

1.000 L. Determinare la concentrazione di tutti gli ioni all'equilibrio e la quantità di precipitati formatisi.

Esercizio 6

Data la seguente cella galvanica:

 $10g \ di \ Ag_{(s)} \ | \ 1.00 \ L \ di \ AgNO_3 \ 0.200M \ | \ 1.00 \ L \ di \ CuSO_4 \ 0.200M \ | \ 10g \ di \ Cu_{(s)}$

Determinare:

- a. Il peso dei due elettrodi metallici quando la cella cessa di erogare corrente
- b. La quantità massima teorica di coulomb che questa cella può generare
- c. La quantità di lavoro elettrico (joule) che questa cella produce durante il passaggio del primo coulomb di corrente (supponendo che la variazione delle concentrazioni nelle due semicelle sia trascurabile)

Co	gnome e Nome					
	Percizio 7 Determinare per ciascuno dei seguenti processi diversamente i processi sono da considerarsi iso		sono positivi o negativi (se non specificato			
	$NH_{3(liq)} \to NH_{3(gas)}$	ΔΗ°	ΔS°			
	$CH_{4(gas)} + 2O_{2(gas)} \rightarrow CO_{2(gas)} + 2H_2O_{(liq)}$	ΔΗ°	ΔS°			
	$NH_{3(gas)}$, $1atm \rightarrow NH_{3(gas)}$, $0.5atm$	ΔΗ°	ΔS°			
	$C_{(diamante)} \rightarrow C_{(grafite)}$	ΔΗ°	ΔS°			
	$NH_{3(liq)}$, $-80^{\circ}C \rightarrow NH_{3(liq)}$, $-60^{\circ}C$	ΔΗ°	ΔS°			
B.	3. Viene preparata una miscela equimolare di due liquidi A e B; A ha un punto normale di ebollizione di 90°C, B e 85°C. Indicare quale è l'affermazione corretta scegliendo tra le alternative proposte. Se la miscela si comporta come una soluzione ideale la sua temperatura di ebollizione è:					
	>90°C <85°C	tra 85° e 90°C	non si può prevedere			
	Se la miscela NON si comporta come una soluzione ideale la sua temperatura di ebollizione è:					
	>90°C <85°C	tra 85° e 90°C	non si può prevedere			

Esercizio 8

Il punto normale di ebollizione del benzene è 80.1°C, l'entalpia standard di formazione del benzene liquido è 49.1 kJ/mole mentre quella del benzene gassoso è 82.9 kJ/mole. Calcolare la tensione di vapore del benzene a 20°C.

Alla temperatura di 85°C la frazione molare di A nel vapore in equilibrio con il liquido è:

Esercizio 9

Bilanciare le seguenti equazioni

$$VCl_2 + Fe_3O_4 + HCl = HVO_3 + FeCl_2 + H_2O$$

$$NaClO_3 + Zn + NaOH = Na_2ZnO_2 + NaCl + H_2O$$

Considerate le seguenti reazioni in soluzione acquosa, nel caso in cui la reazione sia possibile e spontanea scrivete i prodotti e bilanciate la reazione, altrimenti scrivere "NON AVVIENE"

$$CO + Fe^{+3} =$$

$$HCN + NaCl =$$

$$HCl + NaCN =$$

$$SO_2Cl_2 + H_2O =$$

$$CCl_4 + H_2O =$$

Esercizio 10

In quale tra le seguenti specie il legame O-O è più corto:

$$O_2 O_2^+ O_2^- O_2^{-2}$$

Scrvere la struttura di Lewis delle seguenti specie, indicare l'ibridazione e la geometria molecolare:

$$Al_2Cl_6$$
, O_3 , $S_2O_7^{-2}$, ClF_5 , NO , N_2H_4