Esame di Chimica Generale del 6 Aprile 2018

COGNOME				NOME			M.	MATRICOLA			
	1	2	3	4	5	6	7	8	9	10	

Indicazioni per lo svolgimento del compito. Scrivete il vostro Nome e Cognome in STAMPATELLO su ciascuno di questi fogli. Il tempo concesso è di 3 ore. Scrivete la soluzione di ogni esercizio su questi fogli; nessun altro foglio verrà preso in considerazione. Per la soluzione degli esercizi 1, 3, 5, 7 e 9 userete lo spazio disponibile sotto il testo, per la soluzione degli esercizi 2, 4, 6, 8 e 10 il retro del foglio. Potete usare SOLAMENTE la tavola periodica e una calcolatrice; libri, appunti e tabelle non sono consentiti. I TELEFONI CELLULARI DEVONO ESSERE SPENTI.

Costanti chimico fisiche (che possono essere utili nella soluzione degli esercizi)

Costante dei gas: $R = 0.082056 \text{ l·atm/}^{\circ}\text{K} = 8.3144 \text{ jou/}^{\circ}\text{K} = 1.9872 \text{ cal/}^{\circ}\text{K}$

1 F = 96485 C/mole 1 atm = 101325 Pa pKa(HF) = 3.17

Kps di Al(OH)₃ = 3.0×10^{-34}

Kps di Ni(OH)₂ = 5.5×10^{-16}

Entalpie di legame

Legame	Energia (kJ/mol)	Legame	Energia (kJ/mol)
Н - Н	436	N - N	160
С - Н	413	N = O	631
C - C	347	N - P	297
C - O	358	О - Н	464
C - N	305	O-S	265
C = C	607	0-0	204
C = O	805	C - F	552
O = O	498	C - S	259
C≡O	1072		

Cognome e Nome	
----------------	--

Esercizio 1

Un composto organico è formato da C, H, O. Determinarne la formula, sapendo che:

a) quando ne vengono bruciati 7.000 g in eccesso di ossigeno, si ottengono 3.316 g di acqua e una quantità di anidride carbonica tale da reagire completamente con 858.7 mL di idrossido di bario 0.5000 M

b) quando 50.0 mg di tale composto vengono sciolti in 10.000 g di un solvente con cui non reagisce ed avente $K_{cr} = 40.0 \, {}^{\circ}C \cdot Kg / mol$ si registra un abbassamento crioscopico di 0.876°C.

Esercizio 2

Calcolare il pH delle seguenti soluzioni:

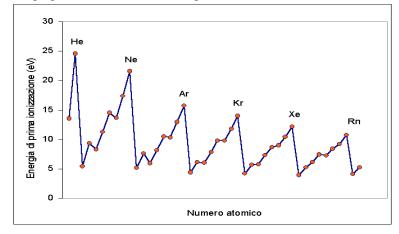
- a. KOH 10⁻⁸ M.
- b. una soluzione contenente NaF 0.1 M e HF 0.2M.
- c. NaNO₃ 0.610M.
- d. una soluzione ottenuta unendo 425mL della soluzione b con 385mL della soluzione c.

Cognome e Nome

Esercizio 3

Calcolare Kp e Kc a 25°C della seguente reazione in fase gassosa

 $SO_3 \leftrightarrows SO_2 + 1/2O_2$


sapendo che a questa temperatura quando 1.40g di SO₃ vengono posti in un recipiente da 2.00 L, all'equilibrio la pressione totale della miscela formatasi è 25.3 kPa.

Calcolare il pH massimo che può avere una soluzione per:

- a. sciogliere 10⁻³ moli/L di Al⁺³.
 b. sciogliere 1mg/L di cloruro di Nickel(II).
- c. sciogliere 1g di KBr.

Esercizio 5

A. Spiegare l'andamento dell'energia di ionizzazione da He a Ne

B. Spiegare perché:

Il dicloruro di Piombo fonde a 500°C mentre il tetracloruro di Piombo fonde a -15°C

Il diossido di carbonio a temperatura ambiente è un gas mentre il diossido di silicio fonde a 1700°C

Il cloruro di sodio fonde a 800°C mentre il monocloruro di iodio fonde a 27°C

Esercizio 6

Per la seguente reazione:

 $Hg^{+2}(aq) + 2Fe^{+2}(aq) = Hg(1) + 2 Fe^{+3}(aq)$

si trova che log(Kc) = 0.753 a 25°C. Determinare la fem della pila:

Pt
$$[Fe^{+2}] = 0.0100 \text{ M}$$
 $[Hg^{+2}] = 0.100 \text{ M}$ Hg $[Fe^{+3}] = 5.0010^{-3} \text{ M}$

Cognome e Nome
Esercizio 7 Per ciascuna delle seguenti specie scrivete una reazione verosimile nella quale la specie si comporta da acido, se possibile di Broensted altrimenti di Lewis:
Cu^{+2}
OH-
CO_2
SF_4
HCN
$HCO_3^ BF_3$
$\mathrm{NH_4}^+$
SO_3
NH_3
Esercizio 8 Utilizzando i dati della tabella in prima pagina (entalpie di legame) determinare il calore che si sviluppa dalla combustione di $1.000g$ di: $CH_4(g)$ $CH_3OH(g)$ $H_2C=CH_2(g)$

Cognome e Nome		
Esercizio 9 A. Scrivete la struttura di Lewis ed indicate geometria, molecolare, ibridazion struttura di Lewis	e e forma delle seguent geometria	i specie: ibridazione
OSF ₄		
$\mathbf{I_3}$		
XeOF ₄		
$H_2P_2O_7^{-2}$		
NO_2		

B. Scrivere la struttura secondo la teoria del legame di valenza di: ${\bf CO_2}$

Esercizio 10

Per la reazione $A \rightarrow \text{prodotti si osservano i seguenti dati cinetici:}$

Ter la reazione 11 prodotti si osser vano i seguenti dati emetiei.					
Concentrazione di A, M	0.100	0.200	0.300		
Velocità, M/s	0.053	0.210	0.473		

Determinare l'ordine di reazione ed il valore della costante cinetica.