

COGNOME				NOME			M	MATRICOLA			
	1	2	3	4	5	6	7	8	9	10	

Indicazioni per lo svolgimento del compito. Scrivete il vostro Nome e Cognome in STAMPATELLO su ciascuno di questi fogli. Il tempo concesso è di 2 ore e mezza. Scrivete la soluzione di ogni esercizio su questi fogli; nessun altro foglio verrà preso in considerazione. Potete usare SOLAMENTE la tavola periodica e una calcolatrice; libri, appunti e tabelle non sono consentiti. Scrivete la soluzione degli esercizi 2, 4, 6, 8 sul retro della pagina.

Costanti utili: $R=0.0821 \ L \cdot atm/(K \cdot mole) = 8.314 \ J/(K \cdot mole)$.

Esercizio 1 Calcolare il ΔH° ed il ΔU° standard a 25°C della seguente reazione::

 $CH_3CH_2OH_{(l)} + O_{2(g)} \rightarrow CH_3COOH_{(l)} + H_2O_{(l)}$

Sapendo che l'entalpia standard di combustione del $CH_3CH_2OH_{(l)}$ è -1368 kJ/mol e che le entalpie standard di formazione del $CH_3COOH_{(l)}$ dell'acqua liquida e dell'anidride carbonica gassosa sono rispettivamente -484.3, -285.8 e -393.5 kJ/mol (tutte a 25°C).

Cognome e Nome
Esercizio 5 Calcolare la Molarità, la molalità e la frazione molale di una soluzione al 10.00% p/v di NaCl in acqua sapendo che la d= 1.066 g/mL. Calcolare inoltre la M della soluzione ottenuta diluendo 200.0 mL della precedente soluzione con 150.0 mL di H_2O

Cognome e Nome
Esercizio 7. A. Spiegare BREVEMENTE e SCHEMATICAMENTE l'andamento dell'energia di prima ionizzazione per g elementi del secondo gruppo e per quelli del secondo periodo.
B. Indicare se esistono gli orbitali definiti dai numeri quantici riportati ed, in tal caso, indicarne il tipo:
n=2, l=1, m=0 n=3, l=3, m=2 n=2, l=-1, m=0 n=6, l=4, m=-4
Esercizio 8. Scrivere le formule di struttura secondo la teoria di Lewis delle specie riportate sotto. Mettere TUTTE le coppie elettroniche e le cariche formali diverse da zero. Nel caso di ibridi di risonanza indicare le strutture di risonanzi più stabili e quella più stabile nel caso in cui non siano tutte equivalenti.
CO_2 H_3O^+ H_2Te $NO_3^ N_2O$

COGNOME				NOME				MATRICOLA			
	1	2	3	4	5	6	7	8	9	10	

Indicazioni per lo svolgimento del compito. Scrivete il vostro Nome e Cognome in STAMPATELLO su ciascuno di questi fogli. Il tempo concesso è di 2 ore e mezza. Scrivete la soluzione di ogni esercizio su questi fogli; nessun altro foglio verrà preso in considerazione. Potete usare SOLAMENTE la tavola periodica e una calcolatrice; libri, appunti e tabelle non sono consentiti. Scrivete la soluzione degli esercizi 2, 4, 6, 8 sul retro della pagina.

Costanti utili: $R=0.0821 \ L \cdot atm/(K \cdot mole) = 8.314 \ J/(K \cdot mole)$.

Esercizio 1 Calcolare il ΔH° ed il ΔU° standard a 25°C della seguente reazione::

 CH_2OH - $CH_2OH_{(l)} + 3O_{2(g)} \rightarrow COOH$ - $COOH_{(l)} + 2H_2O_{(l)}$

Sapendo che l'entalpia standard di combustione del CH_2OH - CH_2OH (1) è -1188 kJ/mol e che le entalpie standard di formazione del COOH-COOH(1) dell'acqua liquida e dell'anidride carbonica gassosa sono rispettivamente -821.7, -285.8 e -393.5 kJ/mol (tutte a 25°C).

Esercizio 2 11,600 g di solfuro ferroso ed una quantità di NaBiO₃ tale da contenere $1,500 \cdot 10^{24}$ atomi di ossigeno, vengono introdotti in un recipiente contenente $2,500 \cdot 10^2$ mL di soluzione acquosa di acido solforico (21,38% m/m, d=1,150 g/mL). Avviene la seguente reazione, di cui va completato il bilanciamento:

 $?NaBiO_3+?acido solforico+?solfuro ferroso \rightarrow 9 Bi_2(SO_4)_3+2 solfato ferrico+9 solfato di sodio+38H_2O$ Calcolare la massa di ciascun reagente avanzato.

Cognome e Nome
Esercizio 3. La densità di un idrocarburo gassoso, misurata a 900,0 torr e 150°C, è 3,8940 g/L. Per bruciare un volume dell'idrocarburo è necessario un volume di ossigeno che, misurato nelle stesse condizioni, è 12,5 volte maggiore. Determinare la formula dell'idrocarburo.

Cognome e Nome						
Esercizio 5 Calcolare la % p/p della soluzione ottenuta diluendo 200.0 mL di soluzione 2.000 M di H ₂ SO ₄ (d= 1.111 g/mL) con 500.0 mL di H ₂ O. Calcolare inoltre la M, la N e la % p/v della soluzione così ottenuta.						

Cognor	ne e Nome					
Eserciz A.					dell'affinità elettronica per gli ele	menti del
						
						
В.	Indicare se esist	tono gli orbitali	definiti dai n	umeri quantici riportati	ed, in tal caso, indicarne il tipo:	
n=0, l=0	0, m=0	n=3, 1=2, m	ı=-2	n=2, l=0, m=0	n=6, l=3, m=-4	_
coppie o più stab	elettroniche e le	cariche formali abile nel caso i	diverse da ze n cui non siar	ero. Nel caso di ibridi di no tutte equivalenti.	e specie riportate sotto. Mettere T risonanza indicare le strutture di	

C

COGNOME				NOME				MATRICOLA			
	1	2	3	4	5	6	7	8	9	10	Ī

Indicazioni per lo svolgimento del compito. Scrivete il vostro Nome e Cognome in STAMPATELLO su ciascuno di questi fogli. Il tempo concesso è di 2 ore e mezza. Scrivete la soluzione di ogni esercizio su questi fogli; nessun altro foglio verrà preso in considerazione. Potete usare SOLAMENTE la tavola periodica e una calcolatrice; libri, appunti e tabelle non sono consentiti. Scrivete la soluzione degli esercizi 2, 4, 6, 8 sul retro della pagina.

Costanti utili: R=0.0821 L-atm/(K-mole) = 8.314 J/(K-mole).

Esercizio 1 Calcolare il ΔH° ed il ΔU° standard a 25°C della seguente reazione::

 $CH_3CH_2OH_{(l)} + 1/2O_{2(g)} \rightarrow CH_3CHO_{(l)} + H_2O_{(l)}$

Sapendo che l'entalpia standard di combustione del $CH_3CH_2OH_{(l)}$ è -1368 kJ/mol e che le entalpie standard di formazione del $CH_3CHO_{(l)}$ dell'acqua liquida e dell'anidride carbonica gassosa sono rispettivamente -192.2, -285.8 e - 393.5 kJ/mol (tutte a 25°C).

Cognome e Nome
Esercizio 3 La densità di un idrocarburo gassoso, misurata a 900,0 torr e 150°C, è 3,4170 g/L. Per bruciare un volume dell'idrocarburo è necessario un volume di ossigeno che, misurato nelle stesse condizioni, è 11 volte maggiore. Determinare la formula dell'idrocarburo.

Cognome e Nome
Esercizio 5 Calcolare la Molarità, la % p/v e la frazione molare di una soluzione di acido solforico al 18.00% p/p (d= 1.250 g/mL). Calcolare inoltre la M della soluzione ottenuta diluendo 200.0 mL della precedente soluzione con 150.0 mL di H_2O

Cognome e Nome
Esercizio 7. A. Spiegare BREVEMENTE e SCHEMATICAMENTE l'andamento del raggio atomico per gli elementi del primo gruppo e per quelli del terzo periodo.
B. Indicare se esistono gli orbitali definiti dai numeri quantici riportati ed, in tal caso, indicarne il tipo:
$n=1,\ l=1,\ m=0\ ____________________________________$
Esercizio 8. Scrivere le formule di struttura secondo la teoria di Lewis delle specie riportate sotto. Mettere TUTTE le coppie elettroniche e le cariche formali diverse da zero. Nel caso di ibridi di risonanza indicare le strutture di risonanza più stabili e quella più stabile nel caso in cui non siano tutte equivalenti. $CF_4 N_2H_4 SbH_3 CO_3^{-2} O_3$

D

COGNOME				NOME			M	MATRICOLA			
	1	2	3	4	5	6	7	8	9	10	

Indicazioni per lo svolgimento del compito. Scrivete il vostro Nome e Cognome in STAMPATELLO su ciascuno di questi fogli. Il tempo concesso è di 2 ore e mezza. Scrivete la soluzione di ogni esercizio su questi fogli; nessun altro foglio verrà preso in considerazione. Potete usare SOLAMENTE la tavola periodica e una calcolatrice; libri, appunti e tabelle non sono consentiti. Scrivete la soluzione degli esercizi 2, 4, 6, 8 sul retro della pagina.

Costanti utili: R=0.0821 L-atm/(K-mole) = 8.314 J/(K-mole).

Esercizio 1 Calcolare il ΔH° ed il ΔU° standard a 25°C della seguente reazione::

 $CH_3CH_{3(g)} + 3/2O_{2(g)} \rightarrow CH_3COOH_{(l)} + H_2O_{(l)}$

Sapendo che l'entalpia standard di combustione del $CH_3CH_{3(g)}$ è -1560 kJ/mol e che le entalpie standard di formazione del $CH_3COOH_{(l)}$ dell'acqua liquida e dell'anidride carbonica gassosa sono rispettivamente -484.3, -285.8 e -393.5 kJ/mol (tutte a 25°C).

Cognome e Nome
Esercizio 3. La densità di un idrocarburo gassoso, misurata a 900,0 torr e 150°C, è 2,9394 g/L. Per bruciare un volume dell'idrocarburo è necessario un volume di ossigeno che, misurato nelle stesse condizioni, è 9,5 volte maggiore. Determinare la formula dell'idrocarburo.

Cognome e Nome
Esercizio 5 Calcolare la Molarità, la molalità e la frazione molale di una soluzione al 12.00% p/p di NaCl in acqua sapendo che la d=1.074 g/mL. Calcolare inoltre la m della soluzione ottenuta diluendo 300.0 mL della precedente soluzione con 150.0 mL di H_2O

Cognome e Nome	,		
elementi	del primo gruppo e dell'elettror	negatività lungo un periodo.	
	·		
B. Indicare s	e esistono gli orbitali definiti d	ai numeri quantici riportati	ed, in tal caso, indicarne il tipo:
n=3, l=1, m=0	n=1, l=1, m=1	n=3, l=0, m=1	n=6, l=3, m=-3
coppie elettroniche		a zero. Nel caso di ibridi di	e specie riportate sotto. Mettere TUTTE risonanza indicare le strutture di risonar