Prova in itinere di Chimica Generale – 7 Giugno 2012

COGNOME			NOME				MATRICOLA		
	1	2	3	4	5	6	7	8	

Indicazioni per lo svolgimento del compito. Scrivete il vostro Nome e Cognome in STAMPATELLO su ciascuno di questi fogli. Il tempo concesso è di 2 ore e mezza. Scrivete la soluzione di ogni esercizio su questi fogli; nessun altro foglio verrà preso in considerazione. Potete usare SOLAMENTE la tavola periodica e una calcolatrice; libri, appunti e tabelle non sono consentiti.

Costanti chimico fisiche (che possono essere utili nella soluzione degli esercizi)

Costante dei gas: $R = 0.082056 \, l \cdot atm/^{\circ} K = 8.3144 \, jou/^{\circ} K = 1.9872 \, cal/^{\circ} K$

 $Kps(Ag_2CrO_4) = 1,2\cdot10^{-12} \text{ mol}^3L^{-3}$

pKa(acido acetico) = 4.74

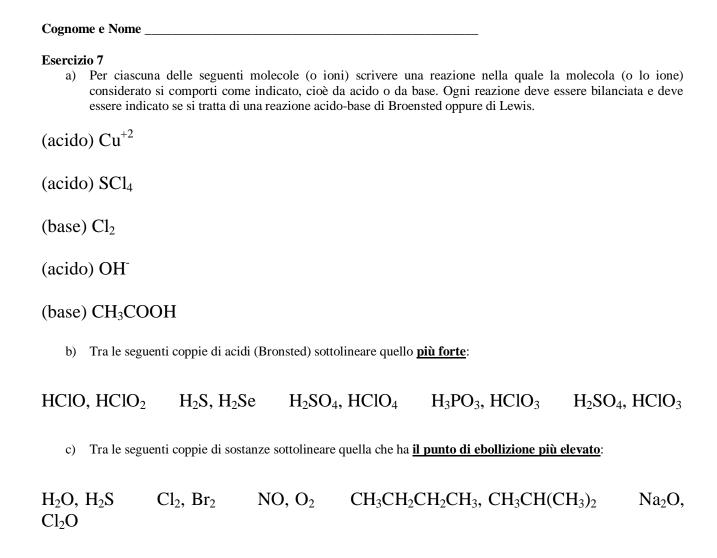
Esercizio 1
Un reattore dal volume di 10.0 L viene caricato con un eccesso di NaHCO3 e riscaldato alla temperatura di 150.0 °C.
Dopo che è stato raggiunto l'equilibrio
$2NaHCO_3(s) \leftrightarrow Na_2CO_3(s) + CO_2(g) + H_2O(g)$
La pressione del recipiente risulta pari 2.56 atm. Calcolare la Kp, la Kc e la quantità di bicarbonato di sodio che si è
decomposto.
Calcolare inoltre la pressione totale, la pressione parziale dell'anidride carbonica e la quantità di bicarbonato di sodio
che si decompone nel caso in cui lo stesso reattore sia caricato con un eccesso di bicarbonato di sodio e 1.62 g di acqua.

Cognome e Nome

Esercizio 2

Una soluzione di acido acetico ha pH = 2.50. A 500.0 mL di questa soluzione sono state aggiunti due aliquote successive di 12.75 g ciascuna di idrossido di bario. Calcolare il pH dopo ciascuna aggiunta considerando trascurabile la variazione di volume della soluzione.

Cognome e Nome _	
Esercizio 3	


Calcolare le concentrazioni di tutte le specie ioniche in soluzione e la massa dell'eventuale precipitato, quando vengono aggiunte:

- 1,00*10⁻¹ moli di K₂CrO₄ ad un litro di soluzione 1,00*10⁻¹ M di AgNO₃ a)
- $1,00*10^{-4}$ moli di K_2CrO_4 ad un litro di soluzione $1,00*10^{-5}$ M di $AgNO_3$ b)

Cognome e Nome
Esercizio 5 Durante la cottura, all'interno di una pentola a pressione, si raggiunge una pressione di 1.95 atm ed in queste condizioni l'acqua bolle a 120°C. Determinare il valore dell'entalpia molare e dell'entropia molare di vaporizzazione dell'acqua a 100°C. Considerare costante con la temperatura l'entalpia di vaporizzazione.

Esercizio 6

In una soluzione 0.204M del reagente A avviene la reazione $A \rightarrow B$. Dopo 32 minuti la concentrazione di A è diventata 0.102M e la velocità della reazione è esattamente la metà di quella misurata all'inizio. Determinare l'ordine di reazione e la costante cinetica.

Esercizio 8

- a) Descrivere la molecola di HNO₃ secondo la teoria del legame di valenza.
- b) Determinare le proprietà magnetiche e l'ordine di legame di NO, N_2 e O_2 .