4	A
L	7
	\ \

COGNOME.	••••		•••••	NOME.	•••••		M.	MATRICOLA		
	1	2	3	4	5	6	7	8		

Indicazioni per lo svolgimento del compito. Scrivete il vostro Nome e Cognome in STAMPATELLO su ciascuno di questi fogli. Il tempo concesso è di 3 ore. Scrivete la soluzione di ogni esercizio su questi fogli; nessun altro foglio verrà preso in considerazione. Potete usare SOLAMENTE la tavola periodica e una calcolatrice; libri, appunti e tabelle non sono consentiti. Non è permesso l'uso di telefoni cellulari, tablet o computer.

Costanti chimico fisiche (che possono essere utili nella soluzione degli esercizi) Costante dei gas: $R = 0.082056 \, l \cdot atm/°K = 8.3144 \, jou/°K = 1.9872 \, cal/°K$

Cognome e Nome

- Una soluzione acquosa di NaCl ha massa pari a 9,594•10² g e la frazione molare di NaCl vale 1,961•10⁻².

 a) Calcolare i grammi d'acqua che devono essere allontanati perché la frazione molare di NaCl diventi 4,762•10⁻²
 - b) Calcolare la molalità iniziale e finale
 - c) Indicata con d la generica densità della soluzione finale, esprimere la molarità della soluzione finale come funzione di d.

Cognome e Nome Esercizio 3 Con Me viene indicato un generico metallo. Individuarlo, sapendo che 128,3138 g di Me ₂ (SO ₄) ₃ vengono trasformati in
Con Me viene indicato un generico metallo. Individuarlo, sapendo che $128,3138$ g di $Me_2(SO_4)_3$ vengono trasformati in $99,9975$ g di $MeCl_3$ e che tutto il metallo presente nel primo composto finisce nel secondo.

A 10,0000 g di una miscela formata da solfato e nitrato ferrico viene aggiunto un eccesso di soluzione acquosa di idrossido di potassio. Si formano 5,1588 g di idrossido ferrico. Calcolare la composizione percentuale della miscela.

	Indica	ate a c	luale gr	uppo r	appre	sentat	ivo ap	ergie d partien	e e spi	iegate	brever	nente	la vost	ra risp	osta.	, .		, - 2	
																			_
	L'affi andan		elettron	ica di	i Si,	P, S	sono	rispett	tivame	ente 1.	34, 72	2, 200	0 kJ/m	ole. S	Spiegai	re bre	eveme	nte qu	_ iesto
																			_
																			_
_																			_
																			_
																			_
	Elenc	are le	proprie	età chi	mico-1	isiche	e che i	ndican	o che l	l'eleme	ento n	otassi	o è un i	netallo)				
	Elenc	are le	proprie	età chi	mico-1	isiche	e che i	ndican	o che l	'eleme	ento p	otassio	o è un 1	netallo)				
	Elenc	eare le	proprie	età chi	mico-1	isiche	e che i	ndican	o che l	'eleme	ento p	otassi	o è un 1	metallo)				
	Elenc	are le	proprie	età chi	mico-1	isiche	e che i	ndican	o che l	'eleme	ento p	otassi	o è un 1	netallo)				
	Elenc	are le	proprie	età chi	mico-1	isiche	e che i	ndican	o che l	'elemo	ento p	otassi	o è un 1	metallo)				— — —
	Elenc	care le	proprie	età chi	mico-1	isiche	e che i	ndican	o che l	'elemo	ento p	otassi	o è un 1	metallo)				
																eri au	iantici	non e	
		ete qu	ale orb													eri qu	antici	non e	
	Scrive	ete qu	ale orb	vitale c					uantici					on que		eri qu	nantici m	non e	
	Scrive	ete qu	nale ort	vitale c	corrisp	onde	ai nu	meri qu	uantici	indica	ati; se	l'orb	itale co	on que	i num	<u> </u>			
	Scrive Scrive	ete quete NC	ale orb	itale o	corrisp n 2	onde l 0	ai nui	meri qu	uantici	indica n 4	ati; se	1'orb m -3	orbi	on que	i num	l	m		
	Scrive Scrive	ete quete NC	nale ort	itale o	corrisp n 2	onde l 0	ai nui	meri qu	uantici	indica n 4	ati; se	1'orb m -3	orbi	on que	i num	l	m		
	Scrive Scrive	ete quete NC	ale orbi	itale o	n 2	onde l 0	ai nui	meri qu orbi	uantici	indica n 4	ati; se	1'orb m -3	orbi	on que	i num n 4	l	m	orb	

Scrivere la struttura di Lewis delle seguenti molecole o ioni, indicare il numero sterico, la geometria molecolare e le cariche formali diverse da zero:

 $HNO_3 \quad ClO_2 \quad H_4P_2O_7 \quad CO_2 \quad SO_3 \quad CNO^{‐} \quad BrF_2^{‐} \quad IF_4^{‐} \quad SeF_6 \quad IF_5$

Esercizio 7 A. Una mole di un gas a 200 atm e 100°C occupa un volume di 92mL. In queste condizioni il gas si comporta da ga
ideale? Se c'è una deviazione dal comportamento ideale a che cosa è dovuta.
B. Bilanciare le seguenti equazioni di ossidoriduzione
$FeS + HNO_3 = Fe(NO_3)_3 + S + NO_2 + H_2O$
$MnSO_4 + PbO_2 + H_2SO_4 = HMnO_4 + PbSO_4 + H_2O$

Determinare il valore di ΔH° e di ΔU° della reazione a 25°C.

 $\begin{array}{l} N_2H_{4(1)} + H_{2(g)} \rightarrow 2NH_{3(g)} \ \ \text{sapendo che:} \\ N_2H_{4(1)} + CH_4O_{(1)} \rightarrow CH_2O_{(g)} + N_2(g) + 3H_{2(g)} \\ N_{2(g)} + 3H_{2(g)} \rightarrow 2NH_{3(g)} \\ CH_4O_{(1)} \rightarrow CH_2O_{(g)} + H_{2(g)} \end{array}$ $\Delta H^{\circ} = -37 \text{ kJ/mole}$ $\Delta H^{\circ} = -46 \text{ kJ/mole}$ $\Delta H^{\circ} = -65 \text{ kJ/mole}$

B

COGNOME.	•••••		•••••	NOME.	••••	M	MATRICOLA			
1 2			3	4	5	6	7	8		

Indicazioni per lo svolgimento del compito. Scrivete il vostro Nome e Cognome in STAMPATELLO su ciascuno di questi fogli. Il tempo concesso è di 3 ore. Scrivete la soluzione di ogni esercizio su questi fogli; nessun altro foglio verrà preso in considerazione. Potete usare SOLAMENTE la tavola periodica e una calcolatrice; libri, appunti e tabelle non sono consentiti. Non è permesso l'uso di telefoni cellulari, tablet o computer.

Costanti chimico fisiche (che possono essere utili nella soluzione degli esercizi) Costante dei gas: $R = 0.082056 \, l \cdot atm/°K = 8.3144 \, jou/°K = 1.9872 \, cal/°K$

Cognome e Nome Esercizio 1 Alla pressione di 900 mmHg e alla temperatura di 20°C, un aeriforme di formula C_xH_y , con x ed y numeri naturali, ha densità $4,135 \cdot 10^6$ mg/m 3 . Per comburere un certo volume dell'aeriforme ad una data temperatura e pressione, è necessario un volume di ossigeno 9 volte maggiore. Determinare la formula dell'aeriforme.

- Una soluzione acquosa di NaCl ha massa pari a 8,518•10² g e la frazione molare di NaCl vale 1,532•10⁻².

 a) Calcolare i grammi d'acqua che devono essere allontanati perché la frazione molare di NaCl diventi 3,382•10⁻²
 - b) Calcolare la molalità iniziale e finale
 - c) Indicata con d la generica densità della soluzione finale, esprimere la molarità della soluzione finale come funzione di d.

Cognome e Nome
Esercizio 3 Con Me viene indicato un generico metallo. Individuarlo, sapendo che 75,9829 g di $Me_2(SO_4)_3$ vengono trasformati in 61,6360 g di $MeCl_3$ e che tutto il metallo presente nel primo composto finisce nel secondo.
61,6360 g di MeCl ₃ e che tutto il metallo presente nei primo composto finisce nei secondo.

A 10,0000 g di una miscela formata da solfato e nitrato ferrico viene aggiunto un eccesso di soluzione acquosa di idrossido di potassio. Si formano 4,6031 g di idrossido ferrico. Calcolare la composizione percentuale della miscela.

Ese	rcizio Un ele	5 emen	to	ha i s	eguen	ıti valo	ori pei	· le en	ergie d	i ioniz	zzazior	ne (in	eV): 1	l ^a 11.3, la vosti	2ª 24 ra risp	.4, 3 ^a 4	47.9, 4	1ª 64.5	5, 5ª 39)2.1. _
																				-
 В.	L'affi	nità (elet	ttronic	ca di C	C, N, C) sonc	rispe	ttivame	ente 12	22, 7, 1	41 kJ	/mole	. Spiega	are bre	vemei	nte qu	esto a	ndamer	– nto.
																				- - -
C.	Elenc	are le	e pı	oprie	tà chii	mico-f	isiche	che i	ndicano	o che l	'eleme	ento cl	loro è	un non	metal	lo				_
																				_
 D.	Scrive			e orbi	itale c	corrisp	onde	ai nur	meri qu	ıantici	indica	ati; se	l'orb	itale co	n que	i num	eri qu	antici	non es	- siste
n	l	m		orbit	ale	n	l	m	orbi	tale	n	l	m	orbi	tale	n	l	m	orbi	tale
2	0	0				5	5	0			3	2	-2			3	2	-3		
E.	Indica	ıre il	nu	mero	di pro	toni, n	eutro	ni ed e	elettron	i prese	enti in	ciascu	ına de	lle segu	enti s	pecie:				
sin	ıbolo	p	+	n	e	sim	bolo	\mathbf{p}^{+}	n	e	sim	bolo	\mathbf{p}^{+}	n	e ⁻	sim	bolo	$\mathbf{p}^{\scriptscriptstyle +}$	n	e ⁻
67-	Zn ⁺²					71	Ga				78 ₉	Se ⁻²				132	² Xe			
										<u> </u>	<u> </u>									

Scrivere la struttura di Lewis delle seguenti molecole o ioni, indicare il numero sterico e la geometria molecolare: CO_3^{-2} NO $S_2O_7^{-2}$ HCN $SOCl_2$ O_3 $ICl_2^ BrCl_4^+$ $TeCl_6$ XeF_4

Cognome e Nome
Esercizio 7
C. Una mole di un gas a 500 atm e 100°C occupa un volume di 92mL. In queste condizioni il gas si comporta da gas ideale? Se c'è una deviazione dal comportamento ideale a che cosa è dovuta

D. Bilanciare le seguenti equazioni di ossidoriduzione
$FeS + HNO_3 = Fe(NO_3)_3 + S + NO + H_2O$
$Zn + HNO_3 + H_2SO_4 = ZnSO_4 + (NH_4)_2SO_4 + H_2O$

Determinare il valore di ΔH° e di ΔU° della reazione a 25°C.

$$\begin{array}{lll} \text{H}_2 \text{SO}_{4(l)} \rightarrow \text{SO}_{3(g)} + \text{H}_2 \text{O}_{(g)} & \text{sapendo che:} \\ \text{H}_2 \text{S}_{(g)} + 2 \text{O}_{2(g)} \rightarrow \text{H}_2 \text{SO}_{4(l)} & \Delta \text{H}^\circ = -235.5 \text{ kJ/mole} \\ \text{H}_2 \text{S}_{(g)} + 2 \text{O}_{2(g)} \rightarrow \text{SO}_{3(g)} + \text{H}_2 \text{O}_{(l)} & \Delta \text{H}^\circ = -207 \text{ kJ/mole} \\ \text{H}_2 \text{O}_{(l)} \rightarrow \text{H}_2 \text{O}_{(g)} & \Delta \text{H}^\circ = 44 \text{ kJ/mole} \\ \end{array}$$

C

COGNOME.	••••		•••••	NOME.	•••••		M.	MATRICOLA		
	1	2	3	4	5	6	7	8		

Indicazioni per lo svolgimento del compito. Scrivete il vostro Nome e Cognome in STAMPATELLO su ciascuno di questi fogli. Il tempo concesso è di 3 ore. Scrivete la soluzione di ogni esercizio su questi fogli; nessun altro foglio verrà preso in considerazione. Potete usare SOLAMENTE la tavola periodica e una calcolatrice; libri, appunti e tabelle non sono consentiti. Non è permesso l'uso di telefoni cellulari, tablet o computer.

Costanti chimico fisiche (che possono essere utili nella soluzione degli esercizi) Costante dei gas: $R = 0.082056 \, l \cdot atm/°K = 8.3144 \, jou/°K = 1.9872 \, cal/°K$

Cognome e Nome
Esercizio 1 Alla pressione di 900 mmHg e alla temperatura di 20°C, un aeriforme di formula C_xH_y , con x ed y numeri naturali, ha densità $4,824 \cdot 10^6$ mg/m³.
Per comburere un certo volume dell'aeriforme ad una data temperatura e pressione, è necessario un volume di ossigeno 10,5 volte maggiore. Determinare la formula dell'aeriforme.

- Esercizio 2
 Una soluzione acquosa di NaCl ha massa pari a 7,442•10² g e la frazione molare di NaCl vale 9,901•10⁻³.

 a) Calcolare i grammi d'acqua che devono essere allontanati perché la frazione molare di NaCl diventi 1,961•10⁻²
 - b) Calcolare la molalità iniziale e finale
 - Indicata con d la generica densità della soluzione finale, esprimere la molarità della soluzione finale come funzione di d.

Cognome e Nome
Con Me viene indicato un generico metallo. Individuarlo, sapendo che $42,6374$ g di $Me_2(SO_4)_3$ vengono trasformati in $34,7088$ g di $MeCl_3$ e che tutto il metallo presente nel primo composto finisce nel secondo.

A 10,0000 g di una miscela formata da solfato e nitrato ferrico viene aggiunto un eccesso di soluzione acquosa di idrossido di potassio. Si formano 5,0658 g di idrossido ferrico. Calcolare la composizione percentuale della miscela.

A. Un elemento ha i seguenti valori per le energie di ionizzazione (in eV): 1° 7.6, 2° 15.0, 3° 80.1, 4° 109.2, 5° 141.3. Indicate a quale gruppo rappresentativo appartiene e spiegate brevemente la vostra risposta. B. Le energie di prima ionizzazione di N, O, F sono rispettivamente 1402, 1314 e 1681 kJ/mole. Spiegare brevemente questo andamento. C. Elencare le proprietà chimico-fisiche che indicano che l'elemento Calcio è un metallo D. Scrivete quale orbitale corrisponde ai numeri quantici indicati; se l'orbitale con quei numeri quantici non esiste scrivete NO. n 1 m orbitale 1 0 1 3 1 -1 3 3 3 3 3 3 3 2 0	n 1	l 0	m 1	orbi	tale di pro	n 3 toni, r	l 1	m -1	orbi	tale	n 3 enti in	l 3	m 3	orbi	tale	n 3	1 2	m 0	orb	tale
A. Un elemento ha i seguenti valori per le energie di ionizzazione (in eV): 1° 7.6, 2° 15.0, 3° 80.1, 4° 109.2, 5° 141.3. Indicate a quale gruppo rappresentativo appartiene e spiegate brevemente la vostra risposta. B. Le energie di prima ionizzazione di N, O, F sono rispettivamente 1402, 1314 e 1681 kJ/mole. Spiegare brevemente questo andamento. C. Elencare le proprietà chimico-fisiche che indicano che l'elemento Calcio è un metallo D. Scrivete quale orbitale corrisponde ai numeri quantici indicati; se l'orbitale con quei numeri quantici non esiste scrivete NO. n 1 m orbitale n 0 1 m orbitale 1 0 1 3 1 -1 3 3 3 3 3 3 3 2 0	n 1	scrive 1	m 1	orbi	tale	n 3	1 1	m -1	orbi	tale	n 3	1 3	m 3	orbi	tale	n 3	1	m		
A. Un elemento ha i seguenti valori per le energie di ionizzazione (in eV): 1º 7.6, 2º 15.0, 3º 80.1, 4º 109.2, 5º 141.3. Indicate a quale gruppo rappresentativo appartiene e spiegate brevemente la vostra risposta. B. Le energie di prima ionizzazione di N, O, F sono rispettivamente 1402, 1314 e 1681 kJ/mole. Spiegare brevemente questo andamento. C. Elencare le proprietà chimico-fisiche che indicano che l'elemento Calcio è un metallo D. Scrivete quale orbitale corrisponde ai numeri quantici indicati; se l'orbitale con quei numeri quantici non esiste scrivete NO. n 1 m orbitale	n	scrive	m).		n	l	m			n	1	m			n	1	m		
A. Un elemento ha i seguenti valori per le energie di ionizzazione (in eV): 1ª 7.6, 2ª 15.0, 3ª 80.1, 4ª 109.2, 5ª 141.3. Indicate a quale gruppo rappresentativo appartiene e spiegate brevemente la vostra risposta. B. Le energie di prima ionizzazione di N, O, F sono rispettivamente 1402, 1314 e 1681 kJ/mole. Spiegare brevemente questo andamento. C. Elencare le proprietà chimico-fisiche che indicano che l'elemento Calcio è un metallo D. Scrivete quale orbitale corrisponde ai numeri quantici indicati; se l'orbitale con quei numeri quantici non esiste scrivete NO.		scrive	ete NO).							1									
A. Un elemento ha i seguenti valori per le energie di ionizzazione (in eV): 1ª 7.6, 2ª 15.0, 3º 80.1, 4º 109.2, 5º 141.3. Indicate a quale gruppo rappresentativo appartiene e spiegate brevemente la vostra risposta. B. Le energie di prima ionizzazione di N, O, F sono rispettivamente 1402, 1314 e 1681 kJ/mole. Spiegare brevemente questo andamento. C. Elencare le proprietà chimico-fisiche che indicano che l'elemento Calcio è un metallo D. Scrivete quale orbitale corrisponde ai numeri quantici indicati; se l'orbitale con quei numeri quantici non esiste	D.				itale c	corrisp	onde	ai num	neri qu	ıantici	indica	ati; se	l'orb	itale co	n que	i num	eri qu	antici	non e	- - - siste
A. Un elemento ha i seguenti valori per le energie di ionizzazione (in eV): 1ª 7.6, 2ª 15.0, 3ª 80.1, 4ª 109.2, 5ª 141.3. Indicate a quale gruppo rappresentativo appartiene e spiegate brevemente la vostra risposta. B. Le energie di prima ionizzazione di N, O, F sono rispettivamente 1402, 1314 e 1681 kJ/mole. Spiegare brevemente questo andamento.																				
B. Le energie di prima ionizzazione di N, O, F sono rispettivamente 1402, 1314 e 1681 kJ/mole. Spiegare brevemente	C.	Elenc	care le	proprie	età chi	mico-f	isiche	che in	dicano	o che l	'eleme	ento C	'alcio	è un me	etallo					-
A. Un elemento ha i seguenti valori per le energie di ionizzazione (in eV): 1 ^a 7.6, 2 ^a 15.0, 3 ^a 80.1, 4 ^a 109.2, 5 ^a 141.3.	В.					zzazio	ne di l	N, O, F	sono -	rispet	tivame	ente 14	402, 1	314 e 1	681 k.	J/mole	e. Spie	gare b	revem	ente
A. Un elemento ha i seguenti valori per le energie di ionizzazione (in eV): 1 ^a 7.6, 2 ^a 15.0, 3 ^a 80.1, 4 ^a 109.2, 5 ^a 141.3.																				- -
																	0.1, 4°	109.2	2, 5 ^a 1 ⁴	-1.3.

Cognome e Nome Esercizio 7	
A. Una mole di un gas a 200 atm e 100°C occupa un volume di 107mL. In queste condizioni il gas si comporta di ideale? Se c'è una deviazione dal comportamento ideale a che cosa è dovuta.	la gas
	_
B. Bilanciare le seguenti equazioni di ossidoriduzione	_
$As_2S_3 + HNO_3 + H_2O = NO + S + H_3AsO_4$	
$MnO + PbO_2 + HNO_3 = HMnO_4 + Pb(NO_3)_2 + H_2O$	

Determinare il valore di ΔH° e di ΔU° della reazione a 25°C.

N_{2(g)} + 2O_{2(g)} \rightarrow 2NO_{2(g)} sapendo che: N_{2(g)} + 3H_{2(g)} \rightarrow 2NH_{3(g)} 2NH_{3(g)} + 4H₂O_(l) \rightarrow 2NO_{2(g)} + 7H_{2(g)} H₂O_(l) \rightarrow H_{2(g)} + 1/2O_{2(g)} $\Delta H^{\circ} = -115 \text{ kJ/mole}$ $\Delta H^{\circ} = -142.5 \text{ kJ/mole}$ $\Delta H^{\circ} = -43.7 \text{ kJ/mole}$

D

COGNOME.	•••••		•••••	NOME.	•••••		M.	ATRICOL	Α
	1	2	3	4	5	6	7	8	

Indicazioni per lo svolgimento del compito. Scrivete il vostro Nome e Cognome in STAMPATELLO su ciascuno di questi fogli. Il tempo concesso è di 3 ore. Scrivete la soluzione di ogni esercizio su questi fogli; nessun altro foglio verrà preso in considerazione. Potete usare SOLAMENTE la tavola periodica e una calcolatrice; libri, appunti e tabelle non sono consentiti. Non è permesso l'uso di telefoni cellulari, tablet o computer.

Costanti chimico fisiche (che possono essere utili nella soluzione degli esercizi) Costante dei gas: $R = 0.082056 \, l \cdot atm/^{\circ} K = 8.3144 \, jou/^{\circ} K = 1.9872 \, cal/^{\circ} K$

Cognome e Nome
Esercizio 1 Alla pressione di 900 mmHg e alla temperatura di 20°C, un aeriforme di formula C_xH_y , con x ed y numeri naturali, ha densità $4,529 \cdot 10^6$ mg/m³.
Per comburere un certo volume dell'aeriforme ad una data temperatura e pressione, è necessario un volume di ossigeno 9 volte maggiore. Determinare la formula dell'aeriforme.

- Una soluzione acquosa di NaCl ha massa pari a 6,365•10² g e la frazione molare di NaCl vale 2,849•10⁻³.

 a) Calcolare i grammi d'acqua che devono essere allontanati perché la frazione molare di NaCl diventi 4,975•10⁻³
 - b) Calcolare la molalità iniziale e finale
 - c) Indicata con d la generica densità della soluzione finale, esprimere la molarità della soluzione finale come funzione di d.

Cognome e Nome Esercizio 3 Con Me viene indicato un generico metallo. Individuarlo, sapendo che 115,5932 g di Me ₂ (SO ₄) ₃ vengono trasformati in 94,0728 g di MeCl ₃ e che tutto il metallo presente nel primo composto finisce nel secondo.
94,0728 g di MeCl ₃ e che tutto il metallo presente nel primo composto finisce nel secondo.

A 10,0000 g di una miscela formata da solfato e nitrato ferrico viene aggiunto un eccesso di soluzione acquosa di idrossido di potassio. Si formano 4,9739 g di idrossido ferrico. Calcolare la composizione percentuale della miscela.

sin	nbolo	\mathbf{p}^{+}		e	sim	ıbolo	\mathbf{p}^{+}	n	e	sin	abolo	\mathbf{p}^{+}	n	e ⁻	sin	ıbolo	$\mathbf{p}^{\scriptscriptstyle +}$	n	e ⁻
E.	Indica								Ī	enti in			lle segu	ienti s	pecie:				
					1		<u> </u>				<u>. </u>				1		<u>. </u>		
2	2	0			3	2	0			4	3	-2			5	3	-4		
n	l	m	orb	itale	n	l	m	orbi	tale	n	l	m	orbi	tale	n	l	m	orbi	tale
D.	Scrive scrive			bitale	corrisp	onde	ai nun	neri qu	ıantici	indic	ati; se	l'orbi	itale co	n que	i num	eri qu	antici	non es	siste
																			_
																			_
 C.	Elenca	are le	propr	ietà chi	mico-	fisiche	e che ir	ndicano	o che l	'elem	ento zo	olfo è	un non	metal	lo				- - -
	questo																		-
В.	Le ene				izzazio	one di	Be, B,	C son	io risp	ettiva	mente	900, 8	801 e 1	086 k	J/mole	e. Spie	gare b	orevem	ente
																			_
																			_
A.													l ^a 6.0, 2 la vosti			8.4, 4	120.0), 5 ^a 15	3.7.

Scrivere la struttura di Lewis delle seguenti molecole o ioni, indicare il numero sterico e la geometria molecolare: $NO_3^- ClO_3 - H_2S_2O_7 - N_3^- SO_4^{-2} - N_2O - IBr_2^- - BrF_4^- - BrF_6^+ - IF_3$

Cognome e Nome
Esercizio 7
A. Una mole di un gas a 600 atm e 100°C occupa un volume di 71mL. In queste condizioni il gas si comporta da gas ideale? Se c'è una deviazione dal comportamento ideale a che cosa è dovuta.
B. Bilanciare le seguenti equazioni di ossidoriduzione
$FeS + HNO_3 = Fe(NO_3)_3 + Fe_2(SO_4)_3 + NO + H_2O$
$Fe_2(SO_4)_3 + SO_2 + H_2O = FeSO_4 + H_2SO_4$

Determinare il valore di ΔH° e di ΔU° della reazione a 25°C.

CO_{2(g)} \rightarrow C_(s) + O_{2(g)} sapendo che: H₂O₍₁₎ \rightarrow H_{2(g)} + 1/2O_{2(g)} C₂H_{6(g)} \rightarrow 2C_(s) + 3H_{2(g)} 2CO_{2(g)} + 3H₂O₍₁₎ \rightarrow C₂H_{6(g)} + 7/2O_{2(g)} $\Delta H^{\circ} = 643 \text{ kJ/mole}$ $\Delta H^{\circ} = 190.6 \text{ kJ/mole}$ $\Delta H^{\circ} = 3511.1 \; kJ/mole$